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THE present memoir was originally intended to contain a development of the theories of
the covariants of certain binary quantics, viz. the quadric, the cubic, and the quartic;
but as regards the theories of the cubic and the quartic, it was found necessary to con-
sider the case of two or more quadrics, and I have therefore comprised such systems of
two or more quadrics, and the resulting theories of the harmonic relation and of invo-
lution, in the subject of the memoir; and although the theory of homography or of the
anharmonic relation belongs rather to the subject of bipartite binary quadrics, yet from
its connexion with the theories just referred to, it is also considered in the memoir.
The paragraphs are numbered continuously with those of my former memoirs on the
subject: Nos. 92 to 95 relate to a single quadric; Nos. 96 to 114 to two or more qua-
drics, and the theories above referred to; Nos. 115 to 127 to the cubic, and Nos. 128
to 145 to the quartic. The several quantics are considered as expressed not only in
terms of the coefficients, but also in terms of the roots,—and I consider the question of
the determination of their linear factors,—a question, in effect, identical with that of
the solution of a quadric, cubic, or biquadratic equation. The expression for the linear
factor of a quadric is deduced from a well-known formula; those for the linear factors
of a cubic and a quartic were first given in my * Note sur les Covariants d’une fonction
quadratique, cubique ou biquadratique & deux indéterminées,” CRELLE, vol. L. pp. 285
to 287, 1855. It is remarkable that they are in one point of view more simple than
the expression for the linear factor of a quadric.
92. In the case of a quadric the expressions considered are

(@, b, X, y), 1)
ac—b , (2)

where (1) is the quadric, and (2) is the discriminant, which is also the quadrinvariant,
catalecticant, and Hessian.

And where it is convenient to do so, I write
1) =0,
(2) =n.
(ac) _ab’ aaﬁ[“”) 9)20 =U9

93. We have

which expresses that the evectant of the discriminant is equal to the quadric;

[28 f‘?
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430 MR. A. CAYLEY’S FIFTH MEMOIR UPON QUANTICS.

(@, b, ¢X0,, —0,)U=40,
which expresses that the provectant of the quadric is equal to the discriminant ;

(@, b, cYbx+cy, —ax—by)=
which expresses that a transmutant of the quadric is equal to the product of the qua~
dric and the discriminant.
94. When the quadric is expressed in terms of the roots, we have

@™'U =(2—ey)(x—Py),

@*0=—i(e—P)";
and in the case of a pair of equal roots,

a'U =(x—ay)?,

95. The problem of the solution of a quadratic equation is that of finding a linear
factor of the quadric. To obtain such linear factor in a symmetrical form, it is neces-
sary to introduce arbitrary quantities which do not really enter into the solution, and
the form obtained is thus in some sort more complicated than in the like problem for a

cubic or a quartic. The solution depends on the linear transformation of the quadric,
viz. if we write

(@, b, Xrw+py, wtey)'=(d, ¥, ¢, y)",

so that
a=(a, b, cY(, v)?,
=(a, b, ¢Xh, vY ¢),
d =(a, b, X, ¢)
then

a'd — b= (ac—b*)(he—mw)?,
an equation which in a different notation is
(@, b, cXx, y)*(a, b, XX, Y)—(a, b, cYo, yY X, Y)P=0O(Yo—Xy),

in which form it is a theorem relating to the quadric and its first and second emanants.
The equation shows that

(@, b, Y&, yXX, Y)++/—0O(Yo—Xy),

where (X, Y) are treated as supernumerary arbitrary constants, is a linear factor of
(@, b, cX @, y)?, and this is the required solution.
96. In the case of two quadrics, the expressions considered are

(@ b, cXa, y), 1)

(@, ¥, IXa, y), (2)
ac—b , (3)
acd—208'+cd (4)

e — b , (5)
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)

/ 49 (6)
/
x\
(ab)—d'b, ad—d'ec, bd—Ve N, y ), (7)
(A +ud, A +pb, retpd  Ya, y), (8)
(ac =8 , ad—200 +-cd, o'd—b"Yn, w), (9)

(1) and (2) are the quadrics, (3) and (5) are the discriminants, and (4) is the lineo-linear
invariant, or connective of the discriminants; (6) is the resultant of the two quadrics,
(7) is the Jacobian, (8) is an intermediate, and (9) is the discriminant of the interme-
diate. And where it is convenient to do so, 1 write

1)=71T
(2) =
(3) =
(4)=Q
(5) =
(6) =
(M=H
(8) =
(9) = o.

97. The Jacobian (7) may also be written in the form
yza_y‘va x° )
a, b, c
d, ¥, ¢

The Resultant (6) may be written in the form

a, 26, ¢ |,
a, 26, ¢,

o, 28, o |
a, 20, /,

MDCCCLVIII. 3M
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and also, taken negatively, in the form v
4(abl —a'b)(bc —b'c)—(ac'—d'c),
which is the discriminant of the J acobian; and in the form
4(ac—0*)o/'d —b")—(ac' — 208 +ca'),
which is the discriminant of the Intermediate.
98. We have the following relations:—

(@, b, Y ¥x4-cy, —dz—0by)=
— (a'd'—0") (@, b, cXa, y)*
+(ad—200'+ca’) (d, ¥, ¢Y, y)?,
(@, ¥, Y bx+-cy, —ax—by)=
+(ad =200 +cd) (@, b, c{x, y)?

—(ac—0b%) (@, 0, Y, y),
and, moreover,

(ac—0*, ad —2bb'+cd', a'd - U',—U)

‘ =—{(ab!—d'b, ad —d'c, bd =Yz, y)*}?,
an equation, the interpretation of which will be considered in the sequel.

- 99. The most important relations which may exist between the two quadrics are—
First, when the connective vanishes, or
ac' —200' +ca' =0,

in which case the two quadrics are said to be karmonically related: the nature of this
relation will be further considered. |

Secondly, when R=0, the two quadrics have in this case a common root, which is
given by any of the equations,

a*: 2z¢y:y’=o,R  :9,R :9,R
=3,R :9,R 3R
=bc'—lc:cd —ca:all—db.
The last set of values express that the Jacobian is a perfect square, and that the two
roots are each equal to the common root of the two quadrics.

The preceding values of the ratios #*: 2ay: ¢ are consistent with each other in virtue
of the assumed relation R=0, hence in general the functions

40, R.9 . R—(o,R)’, 0,R.9,R—09,R.3,R, &ec.
all of them contain the Resultant R as a factor.

It is easy to see that the Jacobian is harmonically related to each of the quadrics; in
fact we have identically .
a(bd'—b'c)+b(cd —da)+c(ab —a'b)=0,
d'(bd —b'c)+b'(cd —c'a)+c'(ab' —a'b)=0,
which contain the theorem in question.
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100. When the quadrics are expressed in terms of the roots, we have
U =(e—ay)o—Py),
a7V =(a—ay)(x—PFY),
40?0 =—(a—P),
2(aa')"'Q=2af+2¢/3'— (e +p)(*' +0),
40?0 =—('—F'),
(ad)”R =(a—d)(e—B)B—o)B—F),
(ad)"H =| 92, 292 , 2* |,
11, e4+p, oS
1, 448, «p
101. The comparison of the last-mentioned value of R with the expression in terms
of the roots obtained from the equation
—R=400'—-Q,
gives the identical equation :
(a—PB)(o/ =B — {203 4 2/3'— (a+P)(&/ +B)}'= — 4(a— /)« —B)(B—)(B—P),
which may be easily verified.
102. We have identically

20+ 208 — (u-+B)(«'+ )
=2(¢ —d)(« —p)—(2—pB)2a—o—f)
=2(B—e)(B—p)—(B—=)(28 —'—p)
=2(of — )& =) — (o/—)(24' —u—)
=2(f'—a)(B'—B)—(B'—«)(2f'—«—P);
and the equation Q=ac¢'—2b0'4ca’'=0 may consequently be written in the several

forms

2 1 1
a—pf =u—a'+u-ﬁ"

2 1 1
fma TE—d TEF-B

2 1 1
u!_ﬁl=“l_a+“l_ﬁ’

2 1 1
F—ad—F—a TF—p’

so that the roots (e, 8), (o, 8') are harmonically related to each other, and hence the
notion of the harmonic relation of the two quadrics.
103. In the case where the two quadrics have a common root a=¢/,

0T =(2—oy)(2—By),

& U'=(2r—ay)(x—PLY)
3M2
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40720 =—(a—p)%,
2(ad )" Q=(a—p)=—p),
420" =(06—ﬁ')2,
R =0
(ad)"H =(f'—B)x—ay)" |
104. In the case of three quadrics, of the expressions which are or might be con-
sidered, it will be sufficient to mention

(@, b, cXa y) 1)
(o, b’ C,Iwa y)% (2)
(aﬂ’ bH’ G”Ix, 9)2’ (3)
a,b,c|, (4)
al, v, d
all, b!l’ C”

where (1), (2), (3) are the quadrics themselves, and (4) is an invariant, linear in the
coefficients of each quadric. And where it is convenient to do so, I write

=0,
2) = U,
(3) = U,
(4) = Q.

1056. The equation 2=0 is, it is clear, the condition to be satisfied by the coefficients
of the three quadrics, in order that there may be a syzygetic relation AU +pU'4+»U"=0,
or what is the same thing, in order that each quadric may be an intermediate of the
other two quadrics; or again, in order that the three quadrics may be in Involution.
Expressed in terms of the roots, the relation is

1, e 4B, of |=0;

1, o +B’a MIBI

1’ “H_I_BH, “/Iﬁll
and when this equation is satisfied, the three pairs, or as it is usually expressed, the six
quantities «, 8; o, B'; &', 3, are said to be in involution, or to form an involution.
And the two perfectly arbitrary pairs o, 3; &', @' considered as belonging to such a

system, may be spoken of as an involution. If the two terms of a pair are equal, e. g.
if o'=[3"=4, then the relation is '

1, 24 , ¢ |=0;
1, a 403, «f
1, “’+BI, “IB,

and such a system is sometimes spoken of as an involution of five terms. Considering
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the pairs («, 8), (', B') as given, there are of course two values of 4 which satisfy the
preceding equation; and calling these 4, and ¢,, then 4, and ¢, are said to be the sibi-
conjugates of the involution «, 3; o/, 3'. It is easy to see that 4,, 4, are the roots of the
equation H=0, where H is the Jacobian of the two quadrics U and U’ whose roots are
(@, B), (¢, B'). In fact, the quadric whose roots are 4,, 4, is

¥, 2yx , 2°

1, a+8, o

1 , “!_l_ﬁf, “Iﬁl
which has been shown to be the Jacobian in question. But this may be made clearer
as follows:—If we imagine that A, w are determined in such manner that the inter-
mediate AU~ U’ may be a perfect square, then we shall have AU+pU'=a"(x—dy)?,

where ¢ denotes one or other of the sibiconjugates 4,, 4, of the involution. But the
condition in order that AU+ U’ may be a square is

(ac—0°, ad —2b0' +cd', o/c =", w)*;

and observing- that the equation A:p=U"—TU implies AU+4+uU'=0=0d"(z—dy)", it is
obvious that the function

(ac—0, ac' =280 +ca', o =5 U, —U)®
must be to a factor prés equal to (v—dy) (r—40,y)*. But we have identically-
(ac—"0*, ac'—2b0 +-cd', dd =" (U, = U= —{(ab'—d'b, ad —d'c, b — ¥ cYw, y)*}?,

and we thus see that (#—4dy), (x—4,y) are the factors of the Jacobian. ‘
106. It has been already remarked that the Jacobian is harmonically related to each
of the quadrics U, U'; hence we see that the sibiconjugates ¢, d, of the involution «, 3,
o, 8’ are a pair harmonically related to the pair «, 3, and also harmonically related to
the pair &, 3, and this properly might be taken as the definition for the sibiconjugates
d,, 4, of an involution of four terms. And moreover, «, §; o/, ' being given, and 4, g,
being determined as the sibiconjugates of the involution, if &, 8" be a pair harmoni-
cally related to 4, 4,, then the three pairs «, 3; /, 8'; &", 8" will form an involution;
or what is the same thing, any three pairs «, 3; &, 8'; «", 38", each of them harmoni-
cally related to a pair 4,, 4,, will be an involution, and ¢, 4, will be the sibiconjugates
of the involution. .
107. In particular, if &, 3 be harmonically related to 4,, 4, then it is easy to see that
4,, §, may be considered as harmonically related to ¢, 4,, and in like manner ¢,, 4, will
be harmonically related to ¢, ¢,; that is, the pairs 4, 4,; ¢,, 0, and «, 3 will form an

involution. This comes to saying that the equation o
1, 2¢,, ¢ |=0
1, 24 o
1, a+p3, o |

i "
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is equivalent to the harmonic relation of the pairs @, 8; 4, ¢,; and in fact the deter-
minant is
(g/_'911)(2“B+20:9//"'(“"'6)(9/""91/))’
which proves the theorem in question. :
108. Before proceeding further, it is proper to consider the equation

1, «, o, ad |=0,
1, B, @8, p@

L oo o o/

1, 3, ¥, &

which expresses that the sets («, 3, ¥, 8) and («/, 3/, ¢/, ¥') are homographic ; for although
the homographic equation may be considered as belonging to the theory of the bipartite
quadric (¢ —ay) (x—«'y), yet the theory of involution cannot be completely discussed
except in connexion with that of homography. If we write

A= —y)(e—3), B=(y—a)B-3), C=(z—B)y—3),
A==y )(«—=3), B=(y—a)(B—0), CO=('—g)y—?),
then we have
A +B 4C=0,
A'4+B'4+C'=0,
and thence
BC—BC=CA'—CA=AB'—A'B;
and either of these expressions is in fact equal to the last-mentioned determinant, as
may be easily verified. Ilence, when the determinant vanishes, we have
A:B:C=A":B":C.
Any one of the three ratios A:B: C, for instance the yatio B: C=
(y—e)(B—?

(«—B) (y—2)’
is said to be the anharmonic ratio of the set («, B, ¥, 8), and consequently the two sets
(e, B, v,0) and (<, B/, o/, ¥') will be homographically related when the anharmonic ratios
(that is, the corresponding anharmonic ratios) of the two sets are equal.
If any one of the anharmonic ratios be equal to unity, then the four terms of the set

taken in a proper manner in pairs, will be harmonics; thus the equation Eé:l gives

(y—=)(B—?)

WEET Y,

- @AY
200+ 2By — («+3)(B+7)=0,

which expresses that the pairs «, 8 and (3, y are harmonics.

which is reducible to

109. Now returning to the theory of involution (and for greater convenience taking
o, of &c. instead of «, 3 &c. to represent the terms of the same pair), the pairs o, «’; 8, 3 ;
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7,%'; 8,8 &c. will be in involution if each of the determinants formed with any three

lines of the matrix

1, o4d, ao
1, B8+p, B8,
L y+o, o/,
1, o420, o,
&e. -
vanishes: but this being so, the determinant
1, o, o, «d
L, B B, BB
L v v v/
1, 3, &, o
which is equal to
o, 1, oddo, od |
B, 1, p+p, BB
v, L v+v, o/
o, 1, 840, &

will vanish, or the two sets («, 3, 7, 3) and (&', 3, 7/, &) will be homographic; that is, if
any number of pairs are in involution, then, considering four pairs and selecting in any
manner a term out of each pair, these four terms and the other terms of the same four
pairs form respectively two sets, the two sets so obtained will be homographic.

110. In particular, if we have only three pairs «, o'; 3,3'; ¥, ¢/, then the sets «, 3, ¥, &/
and &/, 8', 9/, « will be homographic; in fact, the condition of homography is

1, «, &, ad |=0,
1, B, B, 8@
L v, o5 v
1, o, o, od

which may be written
e, 1, atd, ad |=0,
8, 1, B+p, BF
v, 1L, v+, o
o, 1, ado, oo

or what is the same thing,
e , 1, ad4d, ad |=0,
B . 1, B+B, BF
vy > Loty v
o —a, 0, 0 , 0
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so that the first-mentioned relation is equivalent to
(=) 1, atdo, oz’ |=0,
L B+8, pf
Loy+vs o/
and the two sets give rise to an involution. The condition of homography as expressed
by the equality of the anharmonic ratios may be written

a—B.y—d d—f.y—a.
a—y.d =B d =l a—p’

or multiplying out,
(e—PB)e—B)(e' —y)(@ —7)—(«'—B)(& —B)a—y)« —7)=0,

which is a form for the equation of involution of the three pairs. But this and the

other transformations of the equation of involution is best obtained by a different

method, as will be presently seen.

111. Imagine now any number of pairs «, ¢'; 3, 8'; 7, 9'; 8, ¥, &c. in involution,
and let @, y, 2, w be the fourth harmonics of the same quantity A with respect to the
pairs «, «'; 8, B'; ¥, ¢ and 9, ¥ respectively; then the anharmonic ratios of the set
(2, 9, 2, w) will be independent of A, or what is the same thing, if &/, ¥/, 2, @' are the
fourth harmonics of any other quantity 2 with respect to the same four pairs, the sets
(%, y, 2, w) and (&', ¥/, 2, w') will be homographic, or we shall have

1, =z, o, ao |=0.

Loy, ¥ o

1, z, 2, z

1, w, o, ww
1t will be sufficient to show this in the case where A is anything whatever, but A’ has a
determinate value, say A'=co ; and since if all the terms «, /, &c. are diminished by the
same quantity A the relations of involution and homography will not be affected, we
may without loss of generality assume A=0, but in this case

200!
v=o ¥ =%(at),
and the equation to be proved is

! ——
ool =
| ! ; ! 3
17 o+ ol? o o, o,

Bp' ! !
1’ ma ﬁ_l'ﬁ’ Bﬁa

f .

Y

13 7%?7 7+ 7" 7')/'7
3%

la m’ B+ o ) Bala

which is obviously a consequence of the equations which express the involution of the
four pairs.
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A set homographic with , y, 2z, w, which are the fourth harmonics of any quantity
whatever A with respect to the pairs in involution, &, &'; 3, 8'; ¥, ¢'; 9, ¥, is said to be
homographic with the four pairs, and we have thus the notion of a set of single quan-
tities homographic with a set of pairs in involution. This very important theory is due
to M. CHASLES.

112. Let r; s; t, be the anharmonic ratios of a set «, 3, 9, 9, and let 7,; s,; ¢, be the
anharmonic ratios (corresponding or not corresponding) of a set «, 3, ¥, 9. And
suppose that«'; s'; ¢; 75 s;t; 585t 858 ¥ 8t s,
are the analogous quantities for three other pairs of sets; then an equation such as

L, 5on =0
8 SS’

or as it is more conveniently written,

ss , rs , rs, rr |=0

‘ ’

/1 /1 /!

/!
ss, rs, rs, rr

"o /" 1 I
s's), rs, rs, rr

! ’

s /71 Z i

s's’y s, rs, rr

is a relation independent of the particular ratios 7:s which have been chosen for the
anharmonic ratios of the sets; this is easily shown by means of the equations

r4s+t=0, r4s+¢=0,
which connect the anharmonic ratios. The equation in fact expresses a certain relation
between four sets («, 8, 7, 3) and four other sets («, 8, 7,, 9,); a relation which may
be termed the relation of the homography of the anharmonic ratios of four and four
sets: the notion of this relation is also due to M. CHASLES.
113. The general relation
1, «+B, o8 |=0
1, “! + B!’ “’ﬁ'
1 w!l_l_BIl’ “HB" 1
may be exhibited in a great variety of forms. In fact, if the determinant is denoted by
Y, then multiplying by this determinant the two sides of the identical equation
w, —u, 1 |=(@u—ov)v—w)(w—u),
v, —ov, 1

w:, —w, 1
we obtain

Y(u—v)v—w)w—u)=

MDCCCLVIII.

(w—e Yu—p ), (v—ea)v—0),

(u—o' Yu—p'), (v—o')(v—F"),

(u—a"Yu—p"), (v—a')(v—Eg"),
3N

(w—a )(w—p)
(w—d Jw—p")
(w—o")(w—p")
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If, for example, u=a, v=03, then we have
Y(e—p)=—(a—d)(a—p)B—"YB—L")+(B—)B—PF)a—")a—p").
And again, if u=a, v=d¢/, w=0", then we have
T =—(a—B")(—B)("—f)+(e—p)(« —p")(«"— ).
Or putting T=0, the first equation gives
(a—o)(B—a") _(a—p")(B—F) .
(a—a)(@'—B) " (a—B)(B"—8)’
and the second equation gives
(=B —B)(e" =)= (a—F) o = ")« =),
which are both of them well-known forms.
114. A corresponding transformation applies to the equation

!
1, o, o, ad |=0,

L, B B, pp

L v o v/

1, o, ¥, &
which expresses the homography of two pairs. In fact, calling the determinant ¥ and
representing by V the similar determinant

s, —¢, —s, 1
! !

t, —t, —t, 1

w!, —u, —u, 1
! !

w, —iv, —ov, 1

which, equated to zero, would express the homography of the sets (s, ¢, u, v) and
(¢, ¢, o, v'), we have
V¥=| (s—a)(§ =), (s—B)¢—P), (5= —7), (§—3)(s' =)
(¢ —e)(t' =), (=BT —B), (E—v)t'—7), (t=3)( —?)
(u—a)td—e), (= B)ui—B), (u—p)tl—7), (u—d)(u—D)
(v—a)( =), (v—BYY —B), (=) —7) (v—B) —¥)
which gives various forms of the equation of homography. In particular, if s=a, s=@,
t=0, t'=d, u=y, v'=¥, v=3, v =1y, then
V¥= : : (e =7)BF—7), (e—8)(F—Y)
- - B=o)e'—=7), (B=3)(«/—¥)
(y—&)(¥ =) (y—PB)' —B) :
@—a)y—o) (—B)y—p)
and the right-hand side breaks up into factors, which are equal to each other (whence
also V="¥), and the equation ¥'=0 takes the form

(=) (B=3)(o =¥)B' =)= (a=3)(B—7)(«d —7')(B' —¥)=0,
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which is, in fact, one of the equations which express the equality of the anharmonic
ratios of («, 3, v,9) and (<, 3, ¢/, d').
115. In the case of a cubic, the expressions considered are—
(a’ b’ 0y de’ y)g’ (]‘)
(ac—1*, ad—be, bd— ™Y, y)*, (2)
—o*d 4 3abe—20%
—abd+2ac® —b3c, ‘
taci—gpatee, [V O
+ad® —3bed+2¢* J
@*d*— 6abed +4ac® +4b°d — 3b*c®, (4)
where (1) is the cubic, (2) is the quadricovariant or Hessian, (3) is the cubicovariant, and

(4) is the quartinvariant or discriminant.
And where it is convenient to do so, I write

1 =1,
(2) = H,
(3) =,
(4) = 0o,

so that we have :
O*— 0 U24-4H?*=0.

116. The Hessian may be written under the form
(ax+by)(cx+dy)— (bo+y)’,

(which, indeed, is the form under which gua Hessian it is originally given), and under
the form

yz, —ya, 22
a, b, c
b, ¢, d

The cubicovariant may be written under the form
(2(ac— %)+ (ad—be)y } (ba®+ 20y 4-dy?)
— ((ad—bo)+2(bd— )y} (a2 +2bay+cy?),
that is, as the Jacobian of the cubic and Hessian ; and under the form
3(3., 9, 9., 0y, —2)' 0,

that is, as the evectant of the discriminant.
The discriminant, taken negatively, may be written under the form

+ 4(ac—8*)(bd — ¢*)—(ad—bc)?,

that is, as the discriminant of the Hessian.
3N2
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117. We have
(a, b, ¢, Y ba>+2cxy+dy?, —ar®—2bay—cy*)=Ud,

which expresses that a transmutant of the cubic is the product of the cubic and the
cubicovariant. The equation

{(am am aca adjiy, —$)3}2D =202
expresses that the second evectant of the discriminant is the square of the cubic.
The equation :
a@ , —3cd o, —38bd+6¢*, —38bc+2ad |=27D0"

—3cd , —3c+4+12bd, —3ad—6bc, —3ac-}+65*
—3bd+6¢* , —3ad—6bc, —3b0*412ac, —3ab
—3bc—12ad, —3ac-}+65* , 3ab , @’

expresses that the determinant formed with the second differential coefficients of the
discriminant gives the square of the discriminant.
The covariants of the intermediate «U-B® are as follows, viz.—
118. For the Hessian, we have
H(zU+B®)=(1, 0, — O, B)H
=(e*—f30)H;
for the cubicovariant,
&(«U4BP)=(0, O, 0, —O* [, B)°U
+(1, 0, —0O, 0Ye, )P
=(e*—30)(eP+B0OU);
and for the discriminant,
8(2U+BP)=(1, 0, —20, 0, O™a, B)P
=(*—p*0)0,
where on the left-hand sides I have, for greater distinctness, written H, &e. to denote

the functional operation of taking the Hessian, &c. of the operand «U--3.
In particular, if «=0, 8=1,

ﬁ@:-— O.H
OP=—02.TU
ECD: s,

119. Solution of a cubic equation.
The question is to find a linear factor of the cubic

(aa b’ ¢, d][w, y)3,
and this can be at once effected by means of the relation
- OU=—4H°
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between the covariants. The equation in fact shows that each of the expressions
HP+Uy/D), $(@-Uy/T)

is a perfect cube, and consequently that the cube root of each of these expressmns isa
linear function of (#, y). The expression

VY @+U/O)—v {2 —=Us/ 1)

is consequently a linear function of , g, and it vanishes when U=0, that is, the expres-
sion is a linear factor of the cubic.
It may be noticed here that the cubic bemg a(w—uy)(w—ﬁy)(a vy), then we may

write
VH@+TU/0)—v Y@= U/ 0)=4a(o—a*)(B—y)(x—ap),

where » is an imaginary cube root of unity: this will appear from the expressions which
will be presently given for the covariants in terms of the roots.
120. Canonical form of the cubic.

The expressions (@+Us/T0), H(P—Ua/10O) are perfect cubes; and if we write
{(®4+U/ O)=+/0Ox°
¥®-Uy/D)=—+/Ty,

then we have

U=X3+Y‘°’,

P=4/D0(x*—¥"),
and thence also .

H=—/0Oxy.

121. When the cubic is expressed in terms of the roots, we have

o~ U=(x—ay)(x—PBy)(z—1ry);
and then putting for shortness :
A=(B—y)(z—ay),
B=(y—e)(x—By),
C=(e—B)x—17y),

A+4+B+4C=0,

so that

we have
a~?H =-—11—8(A2+B2+C2)=—},-(BC+CA+AB),

a~® = — 3 (B—C)(C—A)(A—B),
@' 0=—37(B—7)(r—a)(e—p)"

122. The covariants H, ® are most simply expressed as above, but it may be proper
to add the equations
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0" H=— s 3(B—7 ooy}
@’ 43"+ o =Py —ye—af,
=—19< bafly— By’ —yo'— o — Py — y’a—o’B, ?:w, yr
LBZQI?+72w2+w262_»_w2l37_627“_72wp J
=—g{(e+aB+a'y)e+(By +ayato'afly} {(a+oBtay)e+(By +o'ye+ aeBly}
(where w is an imaginary cube root of unity),

a=*® = g 3 (a—B) (a—y)*(x—By)* (@ —vy) -
2(68+ B+ 9%) —3(By*+ 7o +af+ By + yu+ a%6) + 124By, N

—2(®By + By + y?af) + 4 (8% + 9% +o?6%) — (ByP + yo® + % + By + P+ a5P), J[ 2 9)°
—2(af%y? + By%e® + ye?B%) + 4 (a®By + By + Y aB) — (B + y%63 4 2?38 + B2 + oPa® + &%), ] ’
U+ 2(B%° + 9% +0%8%) — 3 (affy® + By%e® + v’ + afPy + BPa® + ya®f%) +126%6%° ]

= {(2a—B—y)z+ 2By —ye—af)y} {(2B—y—a)z+ (2ya—af—Ly)y} {(2y—a—B)x+ (24— Py —ya)y}.

- 128. Tt may be observed that we have ¢~°00U?= —<% A*B*C?, which, with the above
values of H, @ in terms of A, B, C and the equation A 4B+ C=0, verifies the equation
®*— 0O U244H*=0, which connects the covariants. In fact, we have identically,

(B=CyP(C—A)(A—B)’=

—4(A+B4C)PABC+(A+B+4CP(BC+CA+AB)+18(A+B+C)(BC+CA+AB)ABC
—4(BC4+CA+AB)P—27TAB*C, ‘

by means of which the verification can be at once effected.

124. If, as before, » is an imaginary cube root of unity, then we may write

2Ta™*® =—(B—-C)(C—A)(A—B)
27@’3U\/ O= 3(w—a*)ABC,
and these values give
27474 (P4 U/ O)={(e4*B+wy) a+(By +oyataoap Jy}°
270*5(P—Un/0) = {(a+af +o*y)o+(By+aya +o'B)y)’,
and we thence obtain
VHO+U VD)~V @ =T VD)= —}a(o—a)(B—7)e~2y),
which agrees with a former result.

125. The preceding formule show without difficulty, that each factor of the cubi-
covariant is the harmonic of a factor of the cubic with respect to the other two factors
of the cubic; and moreover, that the factors of the cubic and the cubicovariant form
together an involution having for sibiconjugates the factors of the Hessian. In fact, the

harmonic of #—ey with respect to (z—@By)(x—yy) is (2o—PB—y)e+(28y—ya—aB)y,
which is a factor of the cubicovariant; the product of the pair of harmonic factors is

(20— B—y)a*+2(By—)ry 4 (—2eBy + e*B+ay )y ;
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and multiplying this by 8—y, and taking the sum of the analogous expressions, this
sum vanishes, or the three pairs form an involution. That the Hessian gives the sibi-
conjugates of the involution is most readily shown as follows:—the last-mentioned
quadric may be written

(—(e4B4v)+8e)2*+2(e oy + By — - B47))ay 4 — BBy + (e +-ory +B7) )y,
which is equal to
32 480 )22 +2(35—32 354550 )y
(o) (st (s430)
or, throwing out the factor 37, to
(b4-ae, 2¢—2ba, d4coYx, y)?,
which is harmonically related to the Hessian
(ac—0, ad—be, bd—c™x, y);
and in like manner the other two pairs of factors will be also harmonically related to

the Hessian.
126. In the case of a pair of equal roots, we have

U= (s—wy)(x—vy);
0 H= —}(a—y Pa—ay),
D=~y (e (=)’
o = 0.

And in the case of all the roots equal, we have
U =(r—ay),
H=0, (I)=0, 0=0.

127. In the solution of a biquadratic equation we have to consider the cubic equation
w*—M(z—1)=0. The cubic here is (1, 0, —M, M=, 1), or what is the same thing,

(1, 0, —iM, MYw, 1)%;
the Hessian is
, M(—1%, 1, — M"Y, 1)*;
the cubicovariant is
M(—1, M, —3iM, M+2M* Y=, 1)°;
and the discriminant is

M*(1—55M).
128. In the case of a quartic, the expressions considered are—
(@, b, o, d, eXx, y)*, (1)
ae—4bd+-3¢%, (2)

(ac—8, 2(ad—bc), ae+2bd—3¢*, 2(be—cd), ce—d™ Yz, y)', (3)
ace~+2bcd—ad’—be—c’, (4)
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r— ad+ 3abc— 21)2, s
— @’ — 2abd+ 9Yac®—060%c,
— babe +1b6acd—108%d,

< +10ad> —10%%, (=, 9)5, (3)
+ bHade-410bd? —15bce,

+  aé® 4+ 2bde— 9c% +6¢d?,
L4 b — Bede+ 2d°

Py

where (1) is the quartic, (2) is the quadrinvariant, (3) is the quadricovariant or Hessian,
(4) is the cubinvariant, and (5) is the cubicovariant.
And where it is convenient to do so, I write

1) =T,
2 =1,
(3) = H,
4 =7,
b)) = .

The preceding covariants are connected by the equation
JU—IUH+4H? = — @2
The discriminant is not an irreducible invariant, its value is

O =IB—=27)*=a%¢"+ &c.,
for which see Table No. 12.

129. It is for some purposes convenient to arrange the expanded expression of the
discriminant in powers of the middle coefficient ¢. 'We thus have

O= &¢—12a%bde*—270%d*—6ab’d’e—27b'¢*—64H°0°
+c(54a*d’e+54ab*e*+108abd*+1084°de)
+c*(—18a%¢>—180abde- 36H*d?)
+c*(—54ad*—54b%)
+¢*(81ae).

130. Solution of a biquadratic equation.
We have to find a linear factor of the quartic

(a, b, ¢, d, e, y)*.
The equation JU*—IU*H-+4-4H*=—®? putting for shortness

I3
M=4—J’2’

may be written

(1, 0, =M, M(TH, JU)'= —}I®*.
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Hence, if =, ,, =, are the roots of
| (1, 0, =M, MYw, 1=0,
the expressions TH—wJU, IH—=,JU, ITH—=,JU are each of them squares; write
(@y—w,(IH—=JU)=X",
(5—w,)(IH—»,JU)=Y?

(o —m,)(ITH—w JU) =72,
so that, identically,
X2 Y2 b Z2=0;

and consequently X +4/Y, X—Y are each of them squares. The expression
aX+BY+yZ
o2 + Bz +72=O,

which may be seen by writing it under the form
3t B)( X —iY) Y a— i) (X-A1Y) —yin/ XY
and in particular, writing o/ w,—w, /®y—w,, /@, —w, for «, B, ¥, the expression
(62—63)\/IH—51JU+(‘53—wl)\/IH-—- w2JU+(wl—m'2)\/IH—E'3JU
is a square; and since the product of the different values is a multiple of U? (this is
most readily perceived by observing that the expression vanishes for U=0), the expres-

sion is the square of a linear factor of the quartic.
131. To complete the solution: @,, w,, =, are the roots of the cubic equation

(1, 0, —iM, MY(w, 1)°=0;

will be a square if only

and hence, putting for shortness,

PP ={M{(—1, M, —iM, M+ 2 M=Y1H, JUP4A/1—M (1,0, —3M, MYIH, JUY,
Q=iM{(—1, 3M, —IM, M+ M*YIH, JUp—+/1—5M (1,0, —3M, MYIH, JU),
we have (» being an imaginary cube root of unity)

Yo—o?)(m—a([H—2JV)=P—-Q

And if
Pl=4M{—144/1—35M}
p=EM{ —1—/T—5M)},
then

3 (0—0*)(wy—5;) =P, —Q,.
Hence, multiplying and observing that (w—«?)*=—3, we find

1
— o= ai(m—a f(IH—=JU)=(P—Q)(P,—Q,),
and consequently

(@—m )W TH=5JU =(s—u’)s/ — (P—Q)(P,— Q).
MDCCCLVIIL. 30
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‘We have, in like manner,
$(o—0*)(wy—wy)(IH—=JU)= P—Q,
Homsim ) ([H— T V) =0 P,
Ho—o*)(w,—o,) IH—w,J U)=0"P—0Q,
and
Ho—o")(m—m)= Pi—Q,
Ho—o*)(my—m)=w Py—a’Q,,
and therefore 3(0—a) (71— @) =0 Py —aQy,

(#y—w N TH—5JU=(a—0*)/ —(P—=Q) (P,—Q,),
(w3—wl)\/IH — w0 JU=(s—a*/ — («P —’Q)(«P,—*Q),
(zy—w ) TH—z,J U=(2—0*)y/ —(a°P —aQ)(#*P,—2Q,);

and hence disregarding the common factor w—a? the square of the linear factor of the

quartic is

N —=(P—-Q)(P,—Q,)+ A~ (0P —*Q)(wP,—a’Q,) ++/ — (#"P — Q) («*P, — & Q,),
which is the required solution.
It may be proper to add that

—w= Po'l" Qm
— Wy — Po+w2Qna
—my=a'Pytw Q,.

132. The solution gives at once the canonical form of the quartic; in fact, writing
X+ Y=2y/ (wz—wa)(ws_“’l)\/ jX2,
X—-;Y:Z\/(w2~w3)(w3—wl)\/jy2,

where X, Y have their former significations, we find, by a simple reduction,
He-wJU=(z3—,)J(x"+y?)’
ITH -, J U= —(v,—@,)J (x*—¥*)

TH— o U= — @) (T pars

Wy — Wy
and thence putting .
T _Hw—u?) (@Rt aQy)

T —w, (@*Py— Q) ’

we have
U= 4+y4+69X2y2,
which is the form required.
133. The Hessian may be written under the form

(am —'ada Bc, ""ab’ B,E(x, m4J,
that is, as the evectant of the cubinvariant.
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The cubicovariant may be obtained by writing the quartic under the form

(ex+-by, bx+cy, cx+dy, deteyYa, y)°
and treating the linear functions as coefficients, or considering this as a cubic, the
cubicovariant of the cubic gives the cubicovariant of the quartic.
If we represent the cubicovariant by

(I)Z(a, b, ¢, d, e, f, gI-iI}', y)s,

ag—9ce+8d*=0;
and moreover forming the quadrinvariant of the sextic, we find
ag—6bf+415ce—10d’=¢0,
where O is the discriminant of the quartic. From these two equations we find
bf—4ce+43d°=—4%0,
which is an expression given by Mr. SaLMoN: it is the more remarkable as the left-
hand side is the quadrinvariant of (b, c, d, e, fY{&, #)*, which is not a covariant of the
quartic. It may be noticed also that we have
af—3be+42cd=0
bg—3cf+2de=0.
134. The covariants of the intermediate
U+ 68H
of the quartic and Hessian are as follows, viz.—
The quadrinvariant is
[(«U+68H)=(1, 187, 81", B)*;
the cubinvariant is
J(@U+6BH)=(J, I2, 91, —I*+54J"e, B)*;

then we have identically,

the Hessian is
H(«U+468H)=(1, 0, —3I%«, B)fH
+(0, I, 9I%e, B)U;

and the cubicovariant is
D(«U+6BH)=(1, 0, —9I, —54I%e, B)'D;
to which may be added the discriminant, which is
E(aU+6BH)=(1, 0, —18I, 108J, 8112, 9721J, —2916J*Y«, B)°0.
135. The expression for the lambdaic is

o , b, =2\ |=T4aI—4n%
b , ¢+n, d
c—2n, d , e

If the determinant is represented by A, that is if
A=—4134214T,
then if A, A,, A, are the roots of the equation A=0, and if the values of 9,A, &c. obtained

by writing 4, in the place of A are represented by 9,A,, &c., then if 2, y satisfy the
302
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equation | (e, b, ¢, d, eXx, y)'=
we have identically (X, Y being arbitrary),
(a, b, ¢, d, eX X, Y]sﬂx, y)
Xy—Ya

—\/ (0., =04 O,, —0y 03X, Y)A,

+\/—(ae9 _ada ae’ —aba B,EZX, Y)4A2

+4/ =0, =34 3, =0 00X, Y)'A,,
a theorem due to AroNmoLD. I have quoted this theorem in its original form as an
application of the lambdaic, but I remark that
— (0, —04 0,5 — 04, ONX, Y)' A= —(a, ... X, Y) —(ac—0 E[X, Y)=—2U'-H

if U', H' are what U, H become, substituting for (z, y) the new facients (X, Y). More-
over, we have

J=o |
7\=—T ’

for substituting this value in the equation A=0, we obtain the before-mentioned equa-
tion »*—M(w—1)=0. We have, therefore,
| — (3 =3 B =3, AKX, V)A= T2 U—H=—1(1H —JoU),

and the equation becomes

(a, b, ¢, t%{;j_[_}%wYI% ?/)\/ —I=\/IH'—Jm1U'+\/IH'—szU'-|—\/IH’-—Jm3U'.

Moreover, if (#—eay) be a factor of the quartic, then replacing in the formula y by the
value o, (2, y) will disappear altogether; and then changing (X, Y) into (, ) where
Z, i are now arbitrary, we have

9 b . d H 4 1
(a, 8, c we_}iawy yXa, 1) N —I=/TH=aJU+r/TH—aJ U 4+/TH—o U,

which is a form connected with the results in Nos. 130 and 131.

136. We have
Yy, —dayd, 627y, —4a’y, o' |=6IH—-9JU;
a , 3b 3¢ , d
@, 3 , 8¢ , d
6 , 3¢ , 3d , e
b, 3¢ , 8d |, e

it will appear from the formule relating to the roots of the quartic, that the expression
6IH —9JU vanishes identically when there are two pairs of equal roots, or what is the
same thing, when the quartic is a perfect square. The conditions in order that the

expression may vanish are obviously
6(ac—0*): 3(ad—be) : ae+2bd—3¢*: 3(be—cd): 6(ce—d?): 9T
= a : b : c : d R e . 1,
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conditions which imply that the several determinants
6(ac—10%), 3ad—bec, ae+2bd—3c, 3(be—cd), 6(ce—d*) ||,
a R b ¢ " d R e

all of them vanish. If for a moment we write 6H=(d/, ¥, ¢, d', 'Y, »)*, then the deter-
minants are

d, b, ¢, d, ¢

@, b, ¢, d, e

we have identically

ad —a'd=3(bc'—10'¢),

el —e'b=3(dc'—d'c),

ad —a'e =3(bd'—b' d),
and the ten determinants thus reduce themselves to seven determinants only, these in
fact being, to mere numerical factors preés, the coefficients of the cubicovariant; this
perfectly agrees with a subsequent result, viz. that the cubicovariant vanishes identi-
cally when the quartic is a perfect square.

137. It may be remarked that the equation 6IH—9JU =0 will be satisfied identically if
4= 0_1’2 e=_, bd=(c—9)(c+20),

where ¢ is arbitrary; the quartlc is in thls case the square of

«/c ) —-—I Yy

If with the conditions in questlon we combine the equation I=0 (which in this case
implies also J=0), we obtain =0, and consequently

or the quartic will be a complete fourth power.

It is easy to express in terms of the coefficients o, ¥', ¢, d', ¢ of 6H the different
determinants

",

s+ 4/3\/“6 +45d — 30’2>

o, b, ¢, d
b, o, d, e

we have in fact

ae—

I

3(bd—c)=%(¢ — \/ae +4b'd — 30’2>a

N ac—b  =id,
ad—be =10,
be—cd =1%d,

wee—d?  =g¢e,
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whence all the above-mentioned determinants will vanish, or the quartic will be a per-
fect fourth power if only the Hessian vanishes identically.
138. Considering the quartic as expressed in terms of the roots, we have

o' U=(z—ay)(x—By)(x—yy)(®—0);
and if we write for shortness
A=(B—y)(e—2),

B=(y—a)(f—9),
C=(e—p)r—2),

A+B+4C=0,

which are connected by

then we have
¢ l=57(A’+DB’4-C*)=—{5(BC+CA+AB),
a ) =445(B—C)(C—A)(A—B);
and for the discriminant we have
@™ 0 =xig(e—B)(2—7)(«—3)(B—y)(B—d)(y—0)
=i ABCY,
and it is easy by means of a preceding formula to verify the equation O =I*—27J2

139. The formule show a very remarkable analogy between the covariants of a cubic
and the invariants of a quartic. In fact—

For the cubic. For the quartic.
A=(B—r)@—ay), A=(B—y)(2—?),
B=(y—e)(e—By), B=(y—«)(8—9),
C=(a—=B)z—1yy), C=(e—pB)r—2).
And then we have corresponding to each other—
For the cubic. For the quartic.
The Hessian, The quadrinvariant,
The cubicovariant, The cubinvariant,
The cubic into the square root of the discriminant. The discriminant.

140. For the two covariants, we have
@ H=—552(e—p)(z—yy)(x—3y)",
0= — L ABC,

and

if for shortness,

A=(0+e—P—y, —da+PBy, du(B+y)—Ly(d+a)Ya, y),
B=0+p—y—a, —P+ya, B(y+e)—ye(d+B)Xz, y)
C=0+y—a—p, —dy+aB, dy(a+B)—aBO+y)Yz, y)-

141. We have
(AQ + BQ + 02)3 i
C)*(C—AP(A—B)*’

M=2" (B—
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or putting for shortness

A=% B=CO—NEA=By

we have
M=4(A*4B*4C*)A?;
and it is then easy to deduce

=z =A(B—-C)
m,=A(C—A)
’ , z=A(A—B);
in fact, these values give
@+, = 0
® @+ @@+ wm,=—M
T\ By, = M,

and they are consequently the roots of the equation #*—M(w—1)=0.
142. The leading coefficient of IH—=,JU is then equal to «¢* into the following

expression, viz.

23(A’+ B+ C)a7(ac—8") — 535(A*+ B+ C)(B—C),
which is equal to

Tis3(A2 B+ ) {48a~%(ac—b*)— 4(B—C)},
and the term in {} is
8(ef+ oy +ad+By+B0+99)— 3(a+B+y+3) — 4y — ) (B—28)+4(2—B)(y —?),
which is equal to
—3(04a—B—y)"

But IH—=,JU is a square, and it is easy to complete the expression, and we have

2 (IH—wJU)=—5ig(A*+ B+ C){(d+a—B—y, —du+py, du(B+y)—By(5+e) x, y)'}?,
¢ (IH—w,JU)=—3g4z(A’+ B+ C){0+-B—y—a, —3B+ye, 0B(y+a)—ye(d+B)Y 2, y)*}%
o (IH—wJU)=—5d7(A’+ B+ C){Q0+y—a—p, —dy+eB, dy(a+p)—aB(y+3)Lzy)*}>
‘We have, moreover,
Ty—wy== — 3AA,
w,—w,=—3AB,

w,—w,=—3AC,
and thence

. o7 T by ATBC
a (m'z—m'3)\/IH—-leU=%(w—w )(B—C)(C—A)(A——B)(B_y)(“—s)

X (d+a—B—y, —du+PBy, do(B+y)—Pyd+2)Xa, 9)"
And taking the sum of the analogous expressions, we find

o *{(wy—w, W/ TH—5,J U +(w,— o, )/ TH—,J U + (v, —w, )8/ TH—w,J U}

=—Ho— ) p=greem =m *— DBy — )=y,

which agrees with a former result.
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143. The equation I=0 gives
. A:B:C=1:w:4%

where » is an imaginary cube root of unity; the factors of the quartic may be said in

this case to be Symmetric Harmonics.

The equation J=0 gives one of the three equations,

A=B, B=C, C=A;
in this case a pair of factors of the quartic are harmonics with respect to the other pair
of factors. If we have simultaneously I=0, J=0, then '
A=B=C=0,
and in this case three of the factors of the quartic are equal.

144. If any two of the linear factors of the quartic are considered as forming, with
the other two linear factors, an involution, the sibiconjugates of the involution make up
a quadratic factor of the cubicovariant; and considering the three pairs of sibiconju-
gates, or what is the same thing, the six linear factors of the cubicovariant, the factors

of a pair are the sibiconjugates of the involution formed by the other two pairs of
factors.

In fact, the sibiconjugates of the involution formed by the equations
(@ —oy)(a—3)=0, (e—py)(x—yy)=0
are found by means of the Jacobian of these two functions, viz. of the quadrics
(2, — d—w, 20a Y, )
(2, —=B—w 2ByX2, y),

(OF+a—B—y, —duitPy, d(B+y)—BLy(+e)X y)'s
viz. a quadratic factor of the cubicovariant; and forming the other two factors, there is
no difficulty in seeing that any one of these is the Jacobian of the other two.
145. In the case of a pair of equal roots, we have

U= (2—ay)(e—yy)(x—2),
T = (e,
0~ =—515(a—y)(2—0)",
o = 0,
o= =35 {2(a—y) (=)' +2(a—0)(x—yy P+ (y =) (r—oy) Nz —ay),
o= F5(y—0)(2e—y—3, Yo—c’, yo+ S —2yedY @, y)*(®—ay).
In the case of two pairs of equal roots, we have

a? U= (z—ay)(e—yy),

which is

a”’l = —11_2(“_7)49
e
o = 0,

o™ H=—vg(a—y(a—ay)f(z—yy),
d= 0;
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these values give also
6ITH—9JU=0.
146. In the case of three equal roots, we have
a”'U=(a—ay)(x—2y),
I =0, J=0, O=0,
o~ H=—g(e—3){2(0—8)"+ (2 —ay)} (4 —ey)’,
D= Jola—d(v—ay)’;
and in the case of four equal roots, we have
a'U=(z—ay)’,
I =0, J=0, O=0,
H=0, &=0.
The preceding formule, for the case of equal roots, agree with the results obtained in

my memoir on the conditions for the existence of given systems of equalities between
the roots of an equation.

Addition, 7th October, 1858.

Covariant and other Tables (binary quadrics Nos. 25 bis, 29 4, 49 A, and 50 bis).

Mr. SaLMoN has pointed out to me, that in the Table No. 25 of the simplest octinva-
riant of a binary quintic*, the coefficients —210, —17, 4+18 and 438 are erroneous,
and has communicated to me the corrected values, which I have since verified: the
terms, with the corrected values of the coefficients, are—

No. 25 bis.

+22 Bdf?
—220 abddPef +74 bcPdPe

— 27 ac’f?

Mr. SaLmoN has also performed the laborious calculation of HERMITES' 18-thic invariant
of a binary quintic, and has kindly permitted me to publish the result, which is given
in the following Table :—

No. 29 a.
+ 1 ddF [ 160 abediefs [—10 atbadelf? | 4120 abdde'ft [ — 15 afed’s?
— 5 dd'¢f° | —90 a’bede’ft | —10 afbde’f | — 40 @’’’ | —110 aled’elf?
+10 ddPf* | +60 a’bede’f? |+ 5 abe" + 60 a’cdief® | +265 alcdlelf®
—10 a:dzi‘ff: —15 aZbccﬁ‘ff“’s -1 a:cgﬂ . + 30 a:c:dsezf: —200 a:colsegj"2
+ 5 ddef* | +10 a®bdlef® | +15 alc'def® | —180 a’c*dPe’f?| + 65 acdzfdf
— 1 de'f —35 a®bd*e’ft | —10 dic'e’f® | +120 abc’de’f? | — 10 dlede
—15 a®bed'f® | +40 abd’e’f* | —90 asddie’f’| — 20 o°*’f | + 45 a’dlef*
[u - — J - e

* Second Memoir, Philosophical Transactions, t. cxlvi. (1856) p. 125.
MDCCCLVIIL. 3p
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No. 29 A (continued).
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No. 29 A (continued).
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No. 29 a (continued).
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bicletf?
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No. 29 A (continued).

46160 bPc’defs [ —243000 B'CdFf? | + 80125 Betd’e’ 500 Hcd"

~ +
+ 34300 DA% | + 92500 bicd%f | —109660 B7dSF? | — 7290 bebdf?
— 10350 bscﬁdeff — 42500 b'c’de® —122800 63C7d582f + 810 bclgerff2
+ 7375 b°c%’ —219730 d'¢*def® | + 1250 B3d’e + 34155 bcd2ef?

| — 73828 BePd’f® | +318500 b'cidie’f | +178200 bictdlef | — 15300 bedelf
+306900 Hc*de*f* | — 80500 bic’d3e’ — 37950 &c*df + 1125 be'%e®
—159000 Bc’d’lf | +114960 bicd’f? | — 37125 BFd’e | — 14895 boldif?
+ 73375 b°c’d?e* + 5250 dicd’ef | + 17875 83'dYe — 27300 bcl'dlelf
+ 71610 Bc'doef? | —138750 bic'd%ef | — 2125 BSd® |+ 18750 bel'd%t
—289800 6504d5e3f 1250 b*id7e® + 1620 6301207-3 + 30250 6cwdsef'

— 59835 BCdfE | 4+ 81150 BPdf | + 30510 Bl 17875 bed‘e
+129000 &cd’e’f | + 40000 bic’d’e? -~ 15120 Bcde’f® | — 6600 bdc°d’F
+ 80500 &°cdle* — 18750 b%c*d'e + 6525 %l + 4125 bc'dbe?
+ 25050 bcdof | + 2250 bcd® —128490 Bedoef? | + 729 oif?
— 80125 &°c*dee® — 135 Bilpt + 69000 %d%f | — 3645 cldef?
— 8700 &°cdVf — 12060 &%"def? — 19875 8%c'°de® + 1350 cMe’f
+ 19875 BedBe | — 1080 HcNe? | + 56110 Bed |+ 1620 Mgt
— 1125 b°d'% — 69220 6309(2:7'3 + 88125 bH%c°d e%f + 3375 clsd:'e?f
+ 990 &cdf! + 89550 H3c°de’f? | — 40000 Hc°d3et — 2250 cBdet
+ 1710 6409e2f3 — 41250 6309de‘ff — 103950 chsde’gf — 3600 cmd“ef
+ 34620 b'c®def® | + 5125 b3c%° + 37125 &%cd’e? + 2125 “d%
+ 4650 eS| +240975 Bédef? | + 22275 BIdF |+ 800 (UdOf
+ 7050 b —179500 Hc*dPe’f | — 4125 b*c’dd — 500 (UdPeé.
+ 92200 Biidirs
| S —— ) | S ——

Mzr. SaLmoN has also remarked to me, that in the Table No. 50 of the cubinvariant of
a binary dodecadic*, the coeflicients are altogether erroneous. There was, in fact, a fun-
damental error in the original calculation ; instead of repeating it, I have, with a view to
the deduction therefrom of the cubinvariant (see Fourth Memoir, No. 78), first calculated
the dodecadic quadricovariant, the value of which is given in the following Table :—

No. 49 a.
+ 1 ag + 6ah | + 15 ai | + 20aj | + 15 ak | + 6al | + 1 am
— 68f | —80bg | — 5406k | — 300 | + 308 | + 540k | + 308
+15 ce +54¢f | + 24 cg | =150 ch | —270 ¢ | — 150 ¢j | + 24 ck

—~~

—10 & | —30 de | +150 df | +430 dg | +270 dk 270 di | —430 dj
—1385 ¢ | —270 ¢f | +495 eg | 41080 ek | +495 ei
— 540 f? - 720 fy | +720 fh

| -840 ¢*
+ 6dbm| + 15 cm | + 20 dm +l5em1+6fm + 1 gm
+ b4¢ | + 30dl | — 30 el | — 54 fl —30 ¢l — 6 Al
— 150 dk | —270 ek | —150 fk | + 24 gk | +54 Ak | +15 ik 2
— 270 ¢j | 4270 ff | +430 gj | +150 4j | —30 4 —10 j? T, y)*
+1080 fi | +495 gi | —270 hi | —135 &
— 720 gh | —540 & |

# Third Memoir; Philosophical Transactions, t. cxlvi. (1856) p. 635.
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It is now very easy to obtain the cubinvariant, which is
No. 50 bis.

+ 1 agm — 54 ¢f! E +270 dhi
— 6 akl + 24 cgk |, —135 %
+15  aik +150 b L +270 efj
—10 gf? —135 ¢2? | +495 egi
— 6 bfm — 10 d'm —540 ek?
+30 &gl + 30 del — 540 f%
—54 bhk +150 dfh 4720 fyh
+30 03 —430 dgj | —280 ¢
+15 cem |




